Skip to main content

NonLinear System

Definition

x˙=f(x(t),u(t))\dot{x} = f(x(t),u(t))

where x(t)Rnx(t) \in \mathbb{R}^{n} is the system state, u(t)Rmu(t) \in \mathbb{R}^{m} is the system input, and f:Rn×RmRnf: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} is sufficiently smooth.

Example

[x˙0x˙1]=[x1+u(1x02)x1x0]\begin{bmatrix} \dot{x}_{0} \\ \dot{x}_{1} \end{bmatrix} = \begin{bmatrix} x_{1} + u \\ (1- x_{0}^{2}) x_{1} -x_{0} \end{bmatrix}