Dynamic SystemsNonLinear SystemOn this pageNonLinear SystemDefinitionx˙=f(x(t),u(t))\dot{x} = f(x(t),u(t))x˙=f(x(t),u(t))where x(t)∈Rnx(t) \in \mathbb{R}^{n}x(t)∈Rn is the system state, u(t)∈Rmu(t) \in \mathbb{R}^{m}u(t)∈Rm is the system input, and f:Rn×Rm→Rnf: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}f:Rn×Rm→Rn is sufficiently smooth.Example[x˙0x˙1]=[x1+u(1−x02)x1−x0]\begin{bmatrix} \dot{x}_{0} \\ \dot{x}_{1} \end{bmatrix} = \begin{bmatrix} x_{1} + u \\ (1- x_{0}^{2}) x_{1} -x_{0} \end{bmatrix}[x˙0x˙1]=[x1+u(1−x02)x1−x0]