Skip to main content

Models

We also provide several frequently used models for tests.


Van der Pol oscillator

d2Xdt2μ(1X2)dXdt+X=0\frac{d^2X}{dt^2}-\mu (1-X^2) \frac{dX}{dt} +X =0

We provide a two-dimensional form as

x˙=yy˙=μ(1x2)yxμ=1\begin{align*} \dot{x} &=y \\ \dot{y} &=\mu (1-x^2)y-x \\ \mu &=1 \end{align*}

References

[1]: Wikipedia contributors. (2022, May 3). Van der Pol oscillator. In Wikipedia, The Free Encyclopedia. Retrieved 09: 47, June 8, 2022, from https://en.wikipedia.org/w/index.php?title=Van_der_Pol_oscillator&oldid=1085958541


Coupled Van der Pol oscillator

x˙0=x1x˙1=(1x02)x1x0+(x2x0)x˙2=x3x˙3=(1x22)x3x2+(x0x2)\begin{align*} \dot{x}_{0} &= x_{1} \\ \dot{x}_{1} &= (1-x_{0}^{2})x_{1} - x_{0} + (x_{2}-x_{0}) \\ \dot{x}_{2} &= x_{3} \\ \dot{x}_{3} &= (1-x_{2}^{2})x_{3} - x_{2} + (x_{0}-x_{2}) \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


2D LTV System

x˙=x+ty+t+u1+v1y˙=t2x+yt+u2+v2\begin{align*} \dot{x} &= -x +ty+t+u_{1} +v_{1} \\ \dot{y} &= t^2x+y-t+u_{2} +v_{2} \end{align*}

References

[1]: 2-dimensional Linear Time-Varying(LTV) system with Time-Varying(TV) and Time-Invariant(TI) uncertainties, from https://flowstar.org/benchmarks/2-dimensional-ltv-system/


Laub-Loomis

x˙0=1.4x20.9x0x˙1=2.5x41.5x1x˙2=0.6x60.8x1x2x˙3=21.3x2x3x˙4=0.7x0x3x4x˙5=0.3x13.1x5x˙6=1.8x51.5x1x6\begin{align*} \dot{x}_{0} &= 1.4 x_{2} - 0.9 x_{0} \\ \dot{x}_{1} &= 2.5 x_{4} - 1.5 x_{1} \\ \dot{x}_{2} &= 0.6x_{6} - 0.8 x_{1} x_{2} \\ \dot{x}_{3} &= 2 - 1.3 x_{2} x_{3} \\ \dot{x}_{4} &= 0.7 x_{0} - x_{3}x_{4} \\ \dot{x}_{5} &= 0.3 x_{1} - 3.1 x_{5} \\ \dot{x}_{6} &= 1.8 x_{5} - 1.5 x_{1} x_{6} \end{align*}

References

[1]: Laub, M. T., & Loomis, W. F. (1998). A molecular network that produces spontaneous oscillations in excitable cells of Dictyostelium. Molecular biology of the cell, 9(12), 3521-3532.


Cellular p53

x˙0=(0.59.963×106x0x41.925×105x0)×3600x˙1=(1.5×103+1.5×102(x02/(547600+x02))8×104x1)×3600x˙2=(8×104x11.444×104x2)×3600x˙3=(1.66×102x29×104x3)×3600x˙4=(9×104x31.66×107x329.963×106x4x5)×3600x˙5=(0.53.209×105x59.963×106x4x5)×3600\begin{align*} \dot{x}_{0} &= (0.5 - 9.963 \times 10^{-6} x_{0} x_{4} - 1.925 \times 10^{-5} x_{0}) \times 3600 \\ \dot{x}_{1} &= (1.5 \times 10^{-3} + 1.5 \times 10^{-2} (x_{0}^{2} / (547600 + x_{0}^{2})) - 8 \times 10^{-4} x_{1}) \times 3600 \\ \dot{x}_{2} &= (8 \times 10^{-4} x_{1} - 1.444 \times 10^{-4} x_{2}) \times 3600 \\ \dot{x}_{3} &= (1.66 \times 10^{-2} x_{2} - 9 \times 10^{-4} x_{3}) \times 3600 \\ \dot{x}_{4} &= (9 \times 10^{-4} x_{3} - 1.66 \times 10^{-7} x_{3} 2 - 9.963 \times 10^{-6} x_{4} x_{5}) \times 3600 \\ \dot{x}_{5} &= (0.5 - 3.209 \times 10^{-5} x_{5} - 9.963 \times 10^{-6} x_{4} x_{5}) \times 3600 \end{align*}

References

[1]: Leenders, G. B., & Tuszynski, J. A. (2013). Stochastic and deterministic models of cellular p53 regulation. Frontiers in oncology, 3, 64.


9D Genetic oscillator

x˙0=50x20.1x0x5x˙1=100x3x0x1x˙2=0.1x0x550x2x˙3=x1x5100x3x˙4=5x2+0.5x010x4x˙5=50x4+50x2+100x3x5(0.1x0+x1+2x7+1)x˙6=50x3+0.01x10.5x6x˙7=0.5x62x5x7+x80.2x7x˙8=2x5x7x8\begin{align*} \dot{x}_{0} &= 50 x_{2} - 0.1 x_{0} x_{5} \\ \dot{x}_{1} &= 100 x_{3} - x_{0} x_{1} \\ \dot{x}_{2} &= 0.1 x_{0} x_{5} - 50 x_{2} \\ \dot{x}_{3} &= x_{1} x_{5} - 100 x_{3} \\ \dot{x}_{4} &= 5 x_{2} + 0.5 x_{0} - 10 x_{4} \\ \dot{x}_{5} &= 50 x_{4} + 50 x_{2} + 100 x_{3} - x_{5} (0.1 x_{0} + x_{1} + 2 x_{7} + 1) \\ \dot{x}_{6} &= 50 x_{3} + 0.01 x_{1} - 0.5 x_{6} \\ \dot{x}_{7} &= 0.5 x_{6} - 2x_{5} x_{7} + x_{8} - 0.2 x_{7} \\ \dot{x}_{8} &= 2 x_{5} x_{7} - x_{8} \end{align*}
References

[1]: Vilar, J. M., Kueh, H. Y., Barkai, N., & Leibler, S. (2002). Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Sciences, 99(9), 5988-5992.


Water Tank 6Eq

x˙0=u0+0.1+k1(4x5)k02gx0x˙1=k02g(x0x1)x˙2=k02g(x1x2)x˙3=k02g(x2x3)x˙4=k02g(x3x4)x˙5=k02g(x4x5)\begin{align*} \dot{x}_{0} &= u_{0} + 0.1 + k_{1} (4 -x_{5}) - k_{0} \sqrt{2gx_{0}} \\ \dot{x}_{1} &= k_{0} \sqrt{2g (x_{0}-x_{1})} \\ \dot{x}_{2} &= k_{0} \sqrt{2g (x_{1}-x_{2})} \\ \dot{x}_{3} &= k_{0} \sqrt{2g (x_{2}-x_{3})} \\ \dot{x}_{4} &= k_{0} \sqrt{2g (x_{3}-x_{4})} \\ \dot{x}_{5} &= k_{0} \sqrt{2g (x_{4}-x_{5})} \end{align*}

where k0=0.015,k1=0.01,g=9.81k_{0} = 0.015, k_{1}= 0.01, g=9.81

References

[1]: Althoff, M., Stursberg, O., & Buss, M. (2008, December). Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In 2008 47th IEEE Conference on Decision and Control (pp. 4042-4048). IEEE.


2D ODE

x˙0=0.5x00.5x1+0.5x0x1x˙1=0.5x1+1+u\begin{align*} \dot{x}_{0} &= -0.5x_{0}-0.5x_{1}+0.5x_{0} x_{1} \\ \dot{x}_{1} &= -0.5x_{1} + 1 + u \end{align*}

References

[1]: Xue, B., Li, R., Zhan, N., & Fränzle, M. (2021, May). Reach-avoid analysis for stochastic discrete-time systems. In 2021 American Control Conference (ACC) (pp. 4879-4885). IEEE.


Lotka-Volterra model of 2 variables

x˙0=1.5x0x0x1x˙1=3x1+x0x1\begin{align*} \dot{x}_{0} &= 1.5 x_{0} - x_{0} x_{1} \\ \dot{x}_{1} &= -3 x_{1} + x_{0} x_{1} \\ \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Lotka-Volterra model of 5 variables

x˙0=x0(1(x0+0.85x1+0.5x4))x˙1=x1(1(x1+0.85x2+0.5x0))x˙2=x2(1(x2+0.85x3+0.5x1))x˙3=x3(1(x3+0.85x4+0.5x2))x˙4=x4(1(x4+0.85x0+0.5x3))\begin{align*} \dot{x}_{0} &= x_{0} (1-(x_{0}+0.85 x_{1} + 0.5 x_{4})) \\ \dot{x}_{1} &= x_{1} (1-(x_{1}+0.85 x_{2} + 0.5 x_{0})) \\ \dot{x}_{2} &= x_{2} (1-(x_{2}+0.85 x_{3} + 0.5 x_{1})) \\ \dot{x}_{3} &= x_{3} (1-(x_{3}+0.85 x_{4} + 0.5 x_{2})) \\ \dot{x}_{4} &= x_{4} (1-(x_{4}+0.85 x_{0} + 0.5 x_{3})) \\ \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


2-state with polynomial vector field

x˙0=0.42x01.05x12.3x020.5x0x1x03x˙1=1.98x0+x0x1\begin{align*} \dot{x}_{0} &= -0.42x_{0} - 1.05 x_{1} - 2.3 x_{0}^{2} -0.5 x_{0} x_{1} - x_{0}^{3} \\ \dot{x}_{1} &= 1.98 x_{0} + x_{0} x_{1} \end{align*}

References

[1]: Tan, W., & Packard, A. (2008). Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming. IEEE Transactions on Automatic Control, 53(2), 565-571.


Synchronous Machine

x˙0=x1x˙1=0.20.7sinx00.05x1\begin{align*} \dot{x}_{0} &= x_1 \\ \dot{x}_{1} &= 0.2 - 0.7 \sin{x_{0}} -0.05x_{1} \end{align*}

References

[1]: Xue, B., She, Z., & Easwaran, A. (2016). Under-approximating backward reachable sets by polytopes. In Computer Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I 28 (pp. 457-476). Springer International Publishing.


Biological model of 7 variables

x˙0=0.4x0+5x2x3x˙1=0.4x0x1x˙2=x15x2x3x˙3=5x4x55x2x3x˙4=5x4x5+5x2x3x˙5=0.5x65x4x5x˙6=0.5x6+5x4x5\begin{align*} \dot{x}_{0} &= -0.4 x_{0} + 5 x_{2} x_{3} \\ \dot{x}_{1} &= 0.4 x_{0} - x_{1} \\ \dot{x}_{2} &= x_{1} - 5 x_{2} x_{3} \\ \dot{x}_{3} &= 5 x_{4} x_{5} - 5 x_{2} x_{3} \\ \dot{x}_{4} &= -5 x_{4} x_{5} + 5 x_{2} x_{3} \\ \dot{x}_{5} &= 0.5 x_{6} - 5 x_{4} x_{5} \\ \dot{x}_{6} &= -0.5 x_{6} + 5 x_{4} x_{5} \\ \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Biolgoical model of 9 variables

x˙0=3x2x0x5x˙1=x3x1x5x˙2=x0x53x2x˙3=x1x5x3x˙4=3x2+5x0x4x˙5=5x4+3x2+x3x5(x0+x1+2x7+1)x˙6=5x3+x10.5x6x˙7=5x62x5x7+x80.2x7x˙8=2x5x7x8\begin{align*} \dot{x}_{0} &= 3 x_{2} - x_{0} x_{5} \\ \dot{x}_{1} &= x_{3} - x_{1} x_{5} \\ \dot{x}_{2} &= x_{0} x_{5} - 3 x_{2} \\ \dot{x}_{3} &= x_{1} x_{5} - x_{3} \\ \dot{x}_{4} &= 3 x_{2} + 5 x_{0} - x_{4} \\ \dot{x}_{5} &= 5 x_{4} + 3 x_{2} + x_{3} - x_{5} (x_{0}+x_{1}+2x_{7}+1) \\ \dot{x}_{6} &= 5 x_{3} + x_{1} - 0.5 x_{6} \\ \dot{x}_{7} &= 5 x_{6} - 2 x_{5} x_{7} + x_{8} - 0.2 x_{7} \\ \dot{x}_{8} &= 2 x_{5} x_{7} - x_{8} \\ \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Jet engine

x˙0=x11.5x020.5x030.5x˙1=3x0x1\begin{align*} \dot{x}_{0} &= -x_{1} - 1.5 x_{0}^2 -0.5 x_{0}^3 -0.5 \\ \dot{x}_{1} &= 3 x_{0} - x_{1} \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Jet engine with time-varying disturbances

x˙0=x11.5x020.5x030.5+u0x˙1=3x0x1+u1\begin{align*} \dot{x}_{0} &= -x_{1} - 1.5 x_{0}^2 -0.5 x{0}^3 -0.5 + u_{0} \\ \dot{x}_{1} &= 3 x_{0} - x_{1} + u_{1} \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Spring-pendulum

x˙0=x2x˙1=x3x˙2=x0x32+gcosθk(x0L)x˙3=2x2x3+gsinθx0k=2L=1g=9.8\begin{align*} \dot{x}_{0} &= x_{2} \\ \dot{x}_{1} &= x_{3} \\ \dot{x}_{2} &= x_{0} x_{3}^2 + g \cos{\theta} - k (x_{0}-L) \\ \dot{x}_{3} &= - \frac{2 x_{2} x_{3} + g \sin{\theta}}{x_{0}} \\ k &= 2 \\ L &= 1 \\ g &= 9.8 \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Brusselator

x˙0=A+x02x1Bx0x0x˙1=Bx0x02x1A=1B=1.5\begin{align*} \dot{x}_{0} &= A + x_{0}^2 x_{1} - B x_{0} - x_{0} \\ \dot{x}_{1} &= B x_{0} - x_{0}^2 x_{1} \\ A &= 1 \\ B &= 1.5 \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Lorentz system

x˙0=σ(x1x0)x˙1=x0(ρx2)x1x˙2=x0x1βx2σ=10ρ=83β=28\begin{align*} \dot{x}_{0} &= \sigma (x_{1} - x_{0}) \\ \dot{x}_{1} &= x_{0} (\rho - x_{2}) - x_{1} \\ \dot{x}_{2} &= x_{0} x_{1} - \beta x_{2} \\ \sigma &= 10 \\ \rho &= \frac{8}{3} \\ \beta &= 28 \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


Rossler attractor

x˙0=x1x2x˙1=x0+ax1x˙2=b+x2(x0c)a=0.2b=0.2c=5.7\begin{align*} \dot{x}_{0} &= -x_{1} - x_{2} \\ \dot{x}_{1} &= x_{0} + a x_{1} \\ \dot{x}_{2} &= b + x_{2} (x_{0} - c) \\ a &= 0.2 \\ b &= 0.2 \\ c &= 5.7 \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


PI controller with disturbance

x˙0=0.101(x020)+1.3203(x10.1616)0.01x02x˙1=(0.101(x020)+1.32.3(x10.1616)0.01x02)+3(20x0)+u\begin{align*} \dot{x}_{0} &= -0.101 (x_{0}-20) + 1.3203 (x_{1} - 0.1616) - 0.01 x_{0}^2 \\ \dot{x}_{1} &= -(-0.101 (x_{0}-20) + 1.32.3 (x_{1} - 0.1616) - 0.01 x_{0}^2) + 3 (20-x_{0}) + u \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).


lac operon model

x˙0=2k3x02k8Rx12+τk3x02+μ+2k3F+(k5I(k9+k5)x0)k2Xk4μ(k3x02+μ)k7(k2(k8Rx12+τ)+k2(k3x02+μ))x˙1=2k8Rx12+2k8(k8Rx12+τ)k3x02+k9x0k2Xk4η(k3x02+μ)k7(k2(k8Rx12+τ)+k2(k3x02+μ))k2=4×105    k2=0.03    k3=0.2k3=60    k4=1    k5=0.6k5=0.006    k6=3×106    k7=3×106k8=0.03    k8=1×105    k9=5000R=0.01    X=0.002002    μ=0.005F=0.0001    I=91100    τ=0.008\begin{align*} \dot{x}_{0} &= -2 k_{3} x_{0}^2 \frac{k_8 R x_{1}^2 + \tau}{k_3 x_{0}^2 + \mu} + 2 k_{-3} F + \frac{(k_5 I - (k_9 + k_{-5}) x_{0}) k_{-2} \mathcal{X} k_4 \mu (k_3 x_{0}^2 + \mu)} {k_7(k_2(k_8 R x_{1}^2 + \tau) + k_{-2} (k_3 x_{0}^2 + \mu))} \\ \dot{x}_{1} &= -2 k_8 R x_{1}^2 + \frac{2 k_{-8} (k_8 R x_{1}^2 + \tau)}{k_3 x_{0}^2} + \frac{k_9 x_{0} k_{-2} \mathcal{X} k_{4} \eta (k_3 x_{0}^2 + \mu)}{k_7(k_2(k_8 R x_{1}^2 + \tau) + k_{-2} (k_3 x_{0}^2 + \mu))} \\ k_2 &= 4 \times {10}^5 \ \ \ \ k_{-2} = 0.03 \ \ \ \ k_{3} = 0.2 \\ k_{-3} &= 60 \ \ \ \ k_{4} = 1 \ \ \ \ k_{5} = 0.6 \\ k_{-5} &= 0.006 \ \ \ \ k_{6} = 3 \times {10}^{-6} \ \ \ \ k_{7} = 3 \times {10}^{-6} \\ k_{8} &= 0.03 \ \ \ \ k_{-8} = 1 \times {10}^{-5} \ \ \ \ k_{9} = 5000 \\ R &= 0.01 \ \ \ \ \mathcal{X} = 0.002002 \ \ \ \ \mu = 0.005 \\ F &= 0.0001 \ \ \ \ I = 91100 \ \ \ \ \tau = 0.008 \end{align*}

References

[1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation, Fachgruppe Informatik, RWTH Aachen University).