Models We also provide several frequently used models for tests.
Van der Pol oscillator d 2 X d t 2 − μ ( 1 − X 2 ) d X d t + X = 0 \frac{d^2X}{dt^2}-\mu (1-X^2) \frac{dX}{dt} +X =0 d t 2 d 2 X − μ ( 1 − X 2 ) d t d X + X = 0 We provide a two-dimensional form as
x ˙ = y y ˙ = μ ( 1 − x 2 ) y − x μ = 1 \begin{align*} \dot{x} &=y \\ \dot{y} &=\mu (1-x^2)y-x \\ \mu &=1 \end{align*} x ˙ y ˙ μ = y = μ ( 1 − x 2 ) y − x = 1 References [1]: Wikipedia contributors. (2022, May 3). Van der Pol oscillator. In Wikipedia, The Free Encyclopedia. Retrieved 09:
47, June 8, 2022, from https://en.wikipedia.org/w/index.php?title=Van_der_Pol_oscillator&oldid=1085958541
Coupled Van der Pol oscillator x ˙ 0 = x 1 x ˙ 1 = ( 1 − x 0 2 ) x 1 − x 0 + ( x 2 − x 0 ) x ˙ 2 = x 3 x ˙ 3 = ( 1 − x 2 2 ) x 3 − x 2 + ( x 0 − x 2 ) \begin{align*} \dot{x}_{0} &= x_{1} \\ \dot{x}_{1} &= (1-x_{0}^{2})x_{1} - x_{0} + (x_{2}-x_{0}) \\ \dot{x}_{2} &= x_{3} \\ \dot{x}_{3} &= (1-x_{2}^{2})x_{3} - x_{2} + (x_{0}-x_{2}) \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 = x 1 = ( 1 − x 0 2 ) x 1 − x 0 + ( x 2 − x 0 ) = x 3 = ( 1 − x 2 2 ) x 3 − x 2 + ( x 0 − x 2 ) References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
2D LTV System x ˙ = − x + t y + t + u 1 + v 1 y ˙ = t 2 x + y − t + u 2 + v 2 \begin{align*} \dot{x} &= -x +ty+t+u_{1} +v_{1} \\ \dot{y} &= t^2x+y-t+u_{2} +v_{2} \end{align*} x ˙ y ˙ = − x + t y + t + u 1 + v 1 = t 2 x + y − t + u 2 + v 2 References [1]: 2-dimensional Linear Time-Varying(LTV) system with Time-Varying(TV) and Time-Invariant(TI)
uncertainties, from https://flowstar.org/benchmarks/2-dimensional-ltv-system/
Laub-Loomis x ˙ 0 = 1.4 x 2 − 0.9 x 0 x ˙ 1 = 2.5 x 4 − 1.5 x 1 x ˙ 2 = 0.6 x 6 − 0.8 x 1 x 2 x ˙ 3 = 2 − 1.3 x 2 x 3 x ˙ 4 = 0.7 x 0 − x 3 x 4 x ˙ 5 = 0.3 x 1 − 3.1 x 5 x ˙ 6 = 1.8 x 5 − 1.5 x 1 x 6 \begin{align*} \dot{x}_{0} &= 1.4 x_{2} - 0.9 x_{0} \\ \dot{x}_{1} &= 2.5 x_{4} - 1.5 x_{1} \\ \dot{x}_{2} &= 0.6x_{6} - 0.8 x_{1} x_{2} \\ \dot{x}_{3} &= 2 - 1.3 x_{2} x_{3} \\ \dot{x}_{4} &= 0.7 x_{0} - x_{3}x_{4} \\ \dot{x}_{5} &= 0.3 x_{1} - 3.1 x_{5} \\ \dot{x}_{6} &= 1.8 x_{5} - 1.5 x_{1} x_{6} \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 x ˙ 4 x ˙ 5 x ˙ 6 = 1.4 x 2 − 0.9 x 0 = 2.5 x 4 − 1.5 x 1 = 0.6 x 6 − 0.8 x 1 x 2 = 2 − 1.3 x 2 x 3 = 0.7 x 0 − x 3 x 4 = 0.3 x 1 − 3.1 x 5 = 1.8 x 5 − 1.5 x 1 x 6 References [1]: Laub, M. T., & Loomis, W. F. (1998). A molecular network that produces spontaneous oscillations in excitable cells
of Dictyostelium. Molecular biology of the cell, 9(12), 3521-3532.
Cellular p53 x ˙ 0 = ( 0.5 − 9.963 × 1 0 − 6 x 0 x 4 − 1.925 × 1 0 − 5 x 0 ) × 3600 x ˙ 1 = ( 1.5 × 1 0 − 3 + 1.5 × 1 0 − 2 ( x 0 2 / ( 547600 + x 0 2 ) ) − 8 × 1 0 − 4 x 1 ) × 3600 x ˙ 2 = ( 8 × 1 0 − 4 x 1 − 1.444 × 1 0 − 4 x 2 ) × 3600 x ˙ 3 = ( 1.66 × 1 0 − 2 x 2 − 9 × 1 0 − 4 x 3 ) × 3600 x ˙ 4 = ( 9 × 1 0 − 4 x 3 − 1.66 × 1 0 − 7 x 3 2 − 9.963 × 1 0 − 6 x 4 x 5 ) × 3600 x ˙ 5 = ( 0.5 − 3.209 × 1 0 − 5 x 5 − 9.963 × 1 0 − 6 x 4 x 5 ) × 3600 \begin{align*} \dot{x}_{0} &= (0.5 - 9.963 \times 10^{-6} x_{0} x_{4} - 1.925 \times 10^{-5} x_{0}) \times 3600 \\ \dot{x}_{1} &= (1.5 \times 10^{-3} + 1.5 \times 10^{-2} (x_{0}^{2} / (547600 + x_{0}^{2})) - 8 \times 10^{-4} x_{1}) \times 3600 \\ \dot{x}_{2} &= (8 \times 10^{-4} x_{1} - 1.444 \times 10^{-4} x_{2}) \times 3600 \\ \dot{x}_{3} &= (1.66 \times 10^{-2} x_{2} - 9 \times 10^{-4} x_{3}) \times 3600 \\ \dot{x}_{4} &= (9 \times 10^{-4} x_{3} - 1.66 \times 10^{-7} x_{3} 2 - 9.963 \times 10^{-6} x_{4} x_{5}) \times 3600 \\ \dot{x}_{5} &= (0.5 - 3.209 \times 10^{-5} x_{5} - 9.963 \times 10^{-6} x_{4} x_{5}) \times 3600 \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 x ˙ 4 x ˙ 5 = ( 0.5 − 9.963 × 1 0 − 6 x 0 x 4 − 1.925 × 1 0 − 5 x 0 ) × 3600 = ( 1.5 × 1 0 − 3 + 1.5 × 1 0 − 2 ( x 0 2 / ( 547600 + x 0 2 )) − 8 × 1 0 − 4 x 1 ) × 3600 = ( 8 × 1 0 − 4 x 1 − 1.444 × 1 0 − 4 x 2 ) × 3600 = ( 1.66 × 1 0 − 2 x 2 − 9 × 1 0 − 4 x 3 ) × 3600 = ( 9 × 1 0 − 4 x 3 − 1.66 × 1 0 − 7 x 3 2 − 9.963 × 1 0 − 6 x 4 x 5 ) × 3600 = ( 0.5 − 3.209 × 1 0 − 5 x 5 − 9.963 × 1 0 − 6 x 4 x 5 ) × 3600 References [1]: Leenders, G. B., & Tuszynski, J. A. (2013). Stochastic and deterministic models of cellular p53 regulation.
Frontiers in oncology, 3, 64.
9D Genetic oscillator x ˙ 0 = 50 x 2 − 0.1 x 0 x 5 x ˙ 1 = 100 x 3 − x 0 x 1 x ˙ 2 = 0.1 x 0 x 5 − 50 x 2 x ˙ 3 = x 1 x 5 − 100 x 3 x ˙ 4 = 5 x 2 + 0.5 x 0 − 10 x 4 x ˙ 5 = 50 x 4 + 50 x 2 + 100 x 3 − x 5 ( 0.1 x 0 + x 1 + 2 x 7 + 1 ) x ˙ 6 = 50 x 3 + 0.01 x 1 − 0.5 x 6 x ˙ 7 = 0.5 x 6 − 2 x 5 x 7 + x 8 − 0.2 x 7 x ˙ 8 = 2 x 5 x 7 − x 8 \begin{align*} \dot{x}_{0} &= 50 x_{2} - 0.1 x_{0} x_{5} \\ \dot{x}_{1} &= 100 x_{3} - x_{0} x_{1} \\ \dot{x}_{2} &= 0.1 x_{0} x_{5} - 50 x_{2} \\ \dot{x}_{3} &= x_{1} x_{5} - 100 x_{3} \\ \dot{x}_{4} &= 5 x_{2} + 0.5 x_{0} - 10 x_{4} \\ \dot{x}_{5} &= 50 x_{4} + 50 x_{2} + 100 x_{3} - x_{5} (0.1 x_{0} + x_{1} + 2 x_{7} + 1) \\ \dot{x}_{6} &= 50 x_{3} + 0.01 x_{1} - 0.5 x_{6} \\ \dot{x}_{7} &= 0.5 x_{6} - 2x_{5} x_{7} + x_{8} - 0.2 x_{7} \\ \dot{x}_{8} &= 2 x_{5} x_{7} - x_{8} \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 x ˙ 4 x ˙ 5 x ˙ 6 x ˙ 7 x ˙ 8 = 50 x 2 − 0.1 x 0 x 5 = 100 x 3 − x 0 x 1 = 0.1 x 0 x 5 − 50 x 2 = x 1 x 5 − 100 x 3 = 5 x 2 + 0.5 x 0 − 10 x 4 = 50 x 4 + 50 x 2 + 100 x 3 − x 5 ( 0.1 x 0 + x 1 + 2 x 7 + 1 ) = 50 x 3 + 0.01 x 1 − 0.5 x 6 = 0.5 x 6 − 2 x 5 x 7 + x 8 − 0.2 x 7 = 2 x 5 x 7 − x 8 References [1]: Vilar, J. M., Kueh, H. Y., Barkai, N., & Leibler, S. (2002). Mechanisms of noise-resistance in genetic oscillators.
Proceedings of the National Academy of Sciences, 99(9), 5988-5992.
Water Tank 6Eq x ˙ 0 = u 0 + 0.1 + k 1 ( 4 − x 5 ) − k 0 2 g x 0 x ˙ 1 = k 0 2 g ( x 0 − x 1 ) x ˙ 2 = k 0 2 g ( x 1 − x 2 ) x ˙ 3 = k 0 2 g ( x 2 − x 3 ) x ˙ 4 = k 0 2 g ( x 3 − x 4 ) x ˙ 5 = k 0 2 g ( x 4 − x 5 ) \begin{align*} \dot{x}_{0} &= u_{0} + 0.1 + k_{1} (4 -x_{5}) - k_{0} \sqrt{2gx_{0}} \\ \dot{x}_{1} &= k_{0} \sqrt{2g (x_{0}-x_{1})} \\ \dot{x}_{2} &= k_{0} \sqrt{2g (x_{1}-x_{2})} \\ \dot{x}_{3} &= k_{0} \sqrt{2g (x_{2}-x_{3})} \\ \dot{x}_{4} &= k_{0} \sqrt{2g (x_{3}-x_{4})} \\ \dot{x}_{5} &= k_{0} \sqrt{2g (x_{4}-x_{5})} \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 x ˙ 4 x ˙ 5 = u 0 + 0.1 + k 1 ( 4 − x 5 ) − k 0 2 g x 0 = k 0 2 g ( x 0 − x 1 ) = k 0 2 g ( x 1 − x 2 ) = k 0 2 g ( x 2 − x 3 ) = k 0 2 g ( x 3 − x 4 ) = k 0 2 g ( x 4 − x 5 ) where k 0 = 0.015 , k 1 = 0.01 , g = 9.81 k_{0} = 0.015, k_{1}= 0.01, g=9.81 k 0 = 0.015 , k 1 = 0.01 , g = 9.81
References [1]: Althoff, M., Stursberg, O., & Buss, M. (2008, December). Reachability analysis of
nonlinear systems with uncertain parameters using conservative linearization. In 2008
47th IEEE Conference on Decision and Control (pp. 4042-4048). IEEE.
2D ODE x ˙ 0 = − 0.5 x 0 − 0.5 x 1 + 0.5 x 0 x 1 x ˙ 1 = − 0.5 x 1 + 1 + u \begin{align*} \dot{x}_{0} &= -0.5x_{0}-0.5x_{1}+0.5x_{0} x_{1} \\ \dot{x}_{1} &= -0.5x_{1} + 1 + u \end{align*} x ˙ 0 x ˙ 1 = − 0.5 x 0 − 0.5 x 1 + 0.5 x 0 x 1 = − 0.5 x 1 + 1 + u References [1]: Xue, B., Li, R., Zhan, N., & Fränzle, M. (2021, May). Reach-avoid analysis for stochastic discrete-time systems. In
2021 American Control Conference (ACC) (pp. 4879-4885). IEEE.
Lotka-Volterra model of 2 variables x ˙ 0 = 1.5 x 0 − x 0 x 1 x ˙ 1 = − 3 x 1 + x 0 x 1 \begin{align*} \dot{x}_{0} &= 1.5 x_{0} - x_{0} x_{1} \\ \dot{x}_{1} &= -3 x_{1} + x_{0} x_{1} \\ \end{align*} x ˙ 0 x ˙ 1 = 1.5 x 0 − x 0 x 1 = − 3 x 1 + x 0 x 1 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Lotka-Volterra model of 5 variables x ˙ 0 = x 0 ( 1 − ( x 0 + 0.85 x 1 + 0.5 x 4 ) ) x ˙ 1 = x 1 ( 1 − ( x 1 + 0.85 x 2 + 0.5 x 0 ) ) x ˙ 2 = x 2 ( 1 − ( x 2 + 0.85 x 3 + 0.5 x 1 ) ) x ˙ 3 = x 3 ( 1 − ( x 3 + 0.85 x 4 + 0.5 x 2 ) ) x ˙ 4 = x 4 ( 1 − ( x 4 + 0.85 x 0 + 0.5 x 3 ) ) \begin{align*} \dot{x}_{0} &= x_{0} (1-(x_{0}+0.85 x_{1} + 0.5 x_{4})) \\ \dot{x}_{1} &= x_{1} (1-(x_{1}+0.85 x_{2} + 0.5 x_{0})) \\ \dot{x}_{2} &= x_{2} (1-(x_{2}+0.85 x_{3} + 0.5 x_{1})) \\ \dot{x}_{3} &= x_{3} (1-(x_{3}+0.85 x_{4} + 0.5 x_{2})) \\ \dot{x}_{4} &= x_{4} (1-(x_{4}+0.85 x_{0} + 0.5 x_{3})) \\ \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 x ˙ 4 = x 0 ( 1 − ( x 0 + 0.85 x 1 + 0.5 x 4 )) = x 1 ( 1 − ( x 1 + 0.85 x 2 + 0.5 x 0 )) = x 2 ( 1 − ( x 2 + 0.85 x 3 + 0.5 x 1 )) = x 3 ( 1 − ( x 3 + 0.85 x 4 + 0.5 x 2 )) = x 4 ( 1 − ( x 4 + 0.85 x 0 + 0.5 x 3 )) References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
2-state with polynomial vector field x ˙ 0 = − 0.42 x 0 − 1.05 x 1 − 2.3 x 0 2 − 0.5 x 0 x 1 − x 0 3 x ˙ 1 = 1.98 x 0 + x 0 x 1 \begin{align*} \dot{x}_{0} &= -0.42x_{0} - 1.05 x_{1} - 2.3 x_{0}^{2} -0.5 x_{0} x_{1} - x_{0}^{3} \\ \dot{x}_{1} &= 1.98 x_{0} + x_{0} x_{1} \end{align*} x ˙ 0 x ˙ 1 = − 0.42 x 0 − 1.05 x 1 − 2.3 x 0 2 − 0.5 x 0 x 1 − x 0 3 = 1.98 x 0 + x 0 x 1 References [1]: Tan, W., & Packard, A. (2008). Stability region analysis using polynomial and composite polynomial Lyapunov
functions and sum-of-squares programming. IEEE Transactions on Automatic Control, 53(2), 565-571.
Synchronous Machine x ˙ 0 = x 1 x ˙ 1 = 0.2 − 0.7 sin x 0 − 0.05 x 1 \begin{align*} \dot{x}_{0} &= x_1 \\ \dot{x}_{1} &= 0.2 - 0.7 \sin{x_{0}} -0.05x_{1} \end{align*} x ˙ 0 x ˙ 1 = x 1 = 0.2 − 0.7 sin x 0 − 0.05 x 1 References [1]: Xue, B., She, Z., & Easwaran, A. (2016). Under-approximating backward reachable sets by polytopes. In Computer
Aided Verification: 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I
28 (pp. 457-476). Springer International Publishing.
Biological model of 7 variables x ˙ 0 = − 0.4 x 0 + 5 x 2 x 3 x ˙ 1 = 0.4 x 0 − x 1 x ˙ 2 = x 1 − 5 x 2 x 3 x ˙ 3 = 5 x 4 x 5 − 5 x 2 x 3 x ˙ 4 = − 5 x 4 x 5 + 5 x 2 x 3 x ˙ 5 = 0.5 x 6 − 5 x 4 x 5 x ˙ 6 = − 0.5 x 6 + 5 x 4 x 5 \begin{align*} \dot{x}_{0} &= -0.4 x_{0} + 5 x_{2} x_{3} \\ \dot{x}_{1} &= 0.4 x_{0} - x_{1} \\ \dot{x}_{2} &= x_{1} - 5 x_{2} x_{3} \\ \dot{x}_{3} &= 5 x_{4} x_{5} - 5 x_{2} x_{3} \\ \dot{x}_{4} &= -5 x_{4} x_{5} + 5 x_{2} x_{3} \\ \dot{x}_{5} &= 0.5 x_{6} - 5 x_{4} x_{5} \\ \dot{x}_{6} &= -0.5 x_{6} + 5 x_{4} x_{5} \\ \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 x ˙ 4 x ˙ 5 x ˙ 6 = − 0.4 x 0 + 5 x 2 x 3 = 0.4 x 0 − x 1 = x 1 − 5 x 2 x 3 = 5 x 4 x 5 − 5 x 2 x 3 = − 5 x 4 x 5 + 5 x 2 x 3 = 0.5 x 6 − 5 x 4 x 5 = − 0.5 x 6 + 5 x 4 x 5 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Biolgoical model of 9 variables x ˙ 0 = 3 x 2 − x 0 x 5 x ˙ 1 = x 3 − x 1 x 5 x ˙ 2 = x 0 x 5 − 3 x 2 x ˙ 3 = x 1 x 5 − x 3 x ˙ 4 = 3 x 2 + 5 x 0 − x 4 x ˙ 5 = 5 x 4 + 3 x 2 + x 3 − x 5 ( x 0 + x 1 + 2 x 7 + 1 ) x ˙ 6 = 5 x 3 + x 1 − 0.5 x 6 x ˙ 7 = 5 x 6 − 2 x 5 x 7 + x 8 − 0.2 x 7 x ˙ 8 = 2 x 5 x 7 − x 8 \begin{align*} \dot{x}_{0} &= 3 x_{2} - x_{0} x_{5} \\ \dot{x}_{1} &= x_{3} - x_{1} x_{5} \\ \dot{x}_{2} &= x_{0} x_{5} - 3 x_{2} \\ \dot{x}_{3} &= x_{1} x_{5} - x_{3} \\ \dot{x}_{4} &= 3 x_{2} + 5 x_{0} - x_{4} \\ \dot{x}_{5} &= 5 x_{4} + 3 x_{2} + x_{3} - x_{5} (x_{0}+x_{1}+2x_{7}+1) \\ \dot{x}_{6} &= 5 x_{3} + x_{1} - 0.5 x_{6} \\ \dot{x}_{7} &= 5 x_{6} - 2 x_{5} x_{7} + x_{8} - 0.2 x_{7} \\ \dot{x}_{8} &= 2 x_{5} x_{7} - x_{8} \\ \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 x ˙ 4 x ˙ 5 x ˙ 6 x ˙ 7 x ˙ 8 = 3 x 2 − x 0 x 5 = x 3 − x 1 x 5 = x 0 x 5 − 3 x 2 = x 1 x 5 − x 3 = 3 x 2 + 5 x 0 − x 4 = 5 x 4 + 3 x 2 + x 3 − x 5 ( x 0 + x 1 + 2 x 7 + 1 ) = 5 x 3 + x 1 − 0.5 x 6 = 5 x 6 − 2 x 5 x 7 + x 8 − 0.2 x 7 = 2 x 5 x 7 − x 8 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Jet engine x ˙ 0 = − x 1 − 1.5 x 0 2 − 0.5 x 0 3 − 0.5 x ˙ 1 = 3 x 0 − x 1 \begin{align*} \dot{x}_{0} &= -x_{1} - 1.5 x_{0}^2 -0.5 x_{0}^3 -0.5 \\ \dot{x}_{1} &= 3 x_{0} - x_{1} \end{align*} x ˙ 0 x ˙ 1 = − x 1 − 1.5 x 0 2 − 0.5 x 0 3 − 0.5 = 3 x 0 − x 1 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Jet engine with time-varying disturbances x ˙ 0 = − x 1 − 1.5 x 0 2 − 0.5 x 0 3 − 0.5 + u 0 x ˙ 1 = 3 x 0 − x 1 + u 1 \begin{align*} \dot{x}_{0} &= -x_{1} - 1.5 x_{0}^2 -0.5 x{0}^3 -0.5 + u_{0} \\ \dot{x}_{1} &= 3 x_{0} - x_{1} + u_{1} \end{align*} x ˙ 0 x ˙ 1 = − x 1 − 1.5 x 0 2 − 0.5 x 0 3 − 0.5 + u 0 = 3 x 0 − x 1 + u 1 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Spring-pendulum x ˙ 0 = x 2 x ˙ 1 = x 3 x ˙ 2 = x 0 x 3 2 + g cos θ − k ( x 0 − L ) x ˙ 3 = − 2 x 2 x 3 + g sin θ x 0 k = 2 L = 1 g = 9.8 \begin{align*} \dot{x}_{0} &= x_{2} \\ \dot{x}_{1} &= x_{3} \\ \dot{x}_{2} &= x_{0} x_{3}^2 + g \cos{\theta} - k (x_{0}-L) \\ \dot{x}_{3} &= - \frac{2 x_{2} x_{3} + g \sin{\theta}}{x_{0}} \\ k &= 2 \\ L &= 1 \\ g &= 9.8 \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 x ˙ 3 k L g = x 2 = x 3 = x 0 x 3 2 + g cos θ − k ( x 0 − L ) = − x 0 2 x 2 x 3 + g sin θ = 2 = 1 = 9.8 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Brusselator x ˙ 0 = A + x 0 2 x 1 − B x 0 − x 0 x ˙ 1 = B x 0 − x 0 2 x 1 A = 1 B = 1.5 \begin{align*} \dot{x}_{0} &= A + x_{0}^2 x_{1} - B x_{0} - x_{0} \\ \dot{x}_{1} &= B x_{0} - x_{0}^2 x_{1} \\ A &= 1 \\ B &= 1.5 \end{align*} x ˙ 0 x ˙ 1 A B = A + x 0 2 x 1 − B x 0 − x 0 = B x 0 − x 0 2 x 1 = 1 = 1.5 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Lorentz system x ˙ 0 = σ ( x 1 − x 0 ) x ˙ 1 = x 0 ( ρ − x 2 ) − x 1 x ˙ 2 = x 0 x 1 − β x 2 σ = 10 ρ = 8 3 β = 28 \begin{align*} \dot{x}_{0} &= \sigma (x_{1} - x_{0}) \\ \dot{x}_{1} &= x_{0} (\rho - x_{2}) - x_{1} \\ \dot{x}_{2} &= x_{0} x_{1} - \beta x_{2} \\ \sigma &= 10 \\ \rho &= \frac{8}{3} \\ \beta &= 28 \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 σ ρ β = σ ( x 1 − x 0 ) = x 0 ( ρ − x 2 ) − x 1 = x 0 x 1 − β x 2 = 10 = 3 8 = 28 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
Rossler attractor x ˙ 0 = − x 1 − x 2 x ˙ 1 = x 0 + a x 1 x ˙ 2 = b + x 2 ( x 0 − c ) a = 0.2 b = 0.2 c = 5.7 \begin{align*} \dot{x}_{0} &= -x_{1} - x_{2} \\ \dot{x}_{1} &= x_{0} + a x_{1} \\ \dot{x}_{2} &= b + x_{2} (x_{0} - c) \\ a &= 0.2 \\ b &= 0.2 \\ c &= 5.7 \end{align*} x ˙ 0 x ˙ 1 x ˙ 2 a b c = − x 1 − x 2 = x 0 + a x 1 = b + x 2 ( x 0 − c ) = 0.2 = 0.2 = 5.7 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
PI controller with disturbance x ˙ 0 = − 0.101 ( x 0 − 20 ) + 1.3203 ( x 1 − 0.1616 ) − 0.01 x 0 2 x ˙ 1 = − ( − 0.101 ( x 0 − 20 ) + 1.32.3 ( x 1 − 0.1616 ) − 0.01 x 0 2 ) + 3 ( 20 − x 0 ) + u \begin{align*} \dot{x}_{0} &= -0.101 (x_{0}-20) + 1.3203 (x_{1} - 0.1616) - 0.01 x_{0}^2 \\ \dot{x}_{1} &= -(-0.101 (x_{0}-20) + 1.32.3 (x_{1} - 0.1616) - 0.01 x_{0}^2) + 3 (20-x_{0}) + u \end{align*} x ˙ 0 x ˙ 1 = − 0.101 ( x 0 − 20 ) + 1.3203 ( x 1 − 0.1616 ) − 0.01 x 0 2 = − ( − 0.101 ( x 0 − 20 ) + 1.32.3 ( x 1 − 0.1616 ) − 0.01 x 0 2 ) + 3 ( 20 − x 0 ) + u References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).
lac operon model x ˙ 0 = − 2 k 3 x 0 2 k 8 R x 1 2 + τ k 3 x 0 2 + μ + 2 k − 3 F + ( k 5 I − ( k 9 + k − 5 ) x 0 ) k − 2 X k 4 μ ( k 3 x 0 2 + μ ) k 7 ( k 2 ( k 8 R x 1 2 + τ ) + k − 2 ( k 3 x 0 2 + μ ) ) x ˙ 1 = − 2 k 8 R x 1 2 + 2 k − 8 ( k 8 R x 1 2 + τ ) k 3 x 0 2 + k 9 x 0 k − 2 X k 4 η ( k 3 x 0 2 + μ ) k 7 ( k 2 ( k 8 R x 1 2 + τ ) + k − 2 ( k 3 x 0 2 + μ ) ) k 2 = 4 × 10 5 k − 2 = 0.03 k 3 = 0.2 k − 3 = 60 k 4 = 1 k 5 = 0.6 k − 5 = 0.006 k 6 = 3 × 10 − 6 k 7 = 3 × 10 − 6 k 8 = 0.03 k − 8 = 1 × 10 − 5 k 9 = 5000 R = 0.01 X = 0.002002 μ = 0.005 F = 0.0001 I = 91100 τ = 0.008 \begin{align*} \dot{x}_{0} &= -2 k_{3} x_{0}^2 \frac{k_8 R x_{1}^2 + \tau}{k_3 x_{0}^2 + \mu} + 2 k_{-3} F + \frac{(k_5 I - (k_9 + k_{-5}) x_{0}) k_{-2} \mathcal{X} k_4 \mu (k_3 x_{0}^2 + \mu)} {k_7(k_2(k_8 R x_{1}^2 + \tau) + k_{-2} (k_3 x_{0}^2 + \mu))} \\ \dot{x}_{1} &= -2 k_8 R x_{1}^2 + \frac{2 k_{-8} (k_8 R x_{1}^2 + \tau)}{k_3 x_{0}^2} + \frac{k_9 x_{0} k_{-2} \mathcal{X} k_{4} \eta (k_3 x_{0}^2 + \mu)}{k_7(k_2(k_8 R x_{1}^2 + \tau) + k_{-2} (k_3 x_{0}^2 + \mu))} \\ k_2 &= 4 \times {10}^5 \ \ \ \ k_{-2} = 0.03 \ \ \ \ k_{3} = 0.2 \\ k_{-3} &= 60 \ \ \ \ k_{4} = 1 \ \ \ \ k_{5} = 0.6 \\ k_{-5} &= 0.006 \ \ \ \ k_{6} = 3 \times {10}^{-6} \ \ \ \ k_{7} = 3 \times {10}^{-6} \\ k_{8} &= 0.03 \ \ \ \ k_{-8} = 1 \times {10}^{-5} \ \ \ \ k_{9} = 5000 \\ R &= 0.01 \ \ \ \ \mathcal{X} = 0.002002 \ \ \ \ \mu = 0.005 \\ F &= 0.0001 \ \ \ \ I = 91100 \ \ \ \ \tau = 0.008 \end{align*} x ˙ 0 x ˙ 1 k 2 k − 3 k − 5 k 8 R F = − 2 k 3 x 0 2 k 3 x 0 2 + μ k 8 R x 1 2 + τ + 2 k − 3 F + k 7 ( k 2 ( k 8 R x 1 2 + τ ) + k − 2 ( k 3 x 0 2 + μ )) ( k 5 I − ( k 9 + k − 5 ) x 0 ) k − 2 X k 4 μ ( k 3 x 0 2 + μ ) = − 2 k 8 R x 1 2 + k 3 x 0 2 2 k − 8 ( k 8 R x 1 2 + τ ) + k 7 ( k 2 ( k 8 R x 1 2 + τ ) + k − 2 ( k 3 x 0 2 + μ )) k 9 x 0 k − 2 X k 4 η ( k 3 x 0 2 + μ ) = 4 × 10 5 k − 2 = 0.03 k 3 = 0.2 = 60 k 4 = 1 k 5 = 0.6 = 0.006 k 6 = 3 × 10 − 6 k 7 = 3 × 10 − 6 = 0.03 k − 8 = 1 × 10 − 5 k 9 = 5000 = 0.01 X = 0.002002 μ = 0.005 = 0.0001 I = 91100 τ = 0.008 References [1]: Chen, X. (2015). Reachability analysis of non-linear hybrid systems using taylor models (Doctoral dissertation,
Fachgruppe Informatik, RWTH Aachen University).